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When a solid plate, with a boundary condition of no normal flow through it, is
introduced parallel to a shear layer it is normally expected to exert a stabilizing
influence on any inviscid linearly unstable waves. In this paper we present an example
of an absolutely unstable boundary-layer flow that can be made more absolutely
unstable by the addition of a plate parallel to the original flow and far from the
boundary layer itself. In particular, the addition of the plate is found to increase
the growth rate of the absolute instability of the original boundary-layer flow by an
order of magnitude for long waves. This phenomenon is illustrated using piecewise-
linear inviscid basic-flow profiles, for which analytical dispersion relations have been
derived. Long-wave stability theories have been developed in several limits clarifying
the mechanisms underlying the behaviour and establishing its generic nature. The
class of flows expected to exhibit this phenomenon includes a class found recently to
have an exponential growth of disturbances in the wall-normal direction, owing to the
approach of certain saddle-points to certain branch-cuts in the complex-wavenumber
plane. The theory also suggests that a convectively unstable flow in an infinite domain
can be converted, in some circumstances, into an absolutely unstable flow when the
domain is made finite by the addition of a plate, however far away the plate is.

1. Introduction
This paper is concerned with the effect on an absolutely unstable boundary layer of

adding a solid plate parallel to the boundary layer and well outside it. The addition of
a solid boundary that makes a flow domain finite in the direction normal to the flow
is usually expected to exert a stabilizing influence on any inviscid linearly unstable
waves. Indeed, in general, the more restricted the domain the more stabilized the flow
is expected to be; see for example § 23.3 of Drazin & Reid (1981) or the experiments
of Shair et al. (1963) on the effects of confinement on the stability of the wake behind
a circular cylinder.

We wish to understand some of the differences in stability characteristics between
flows that are infinite in the direction normal to a flow, e.g. boundary layers, jets, wakes
and free mixing layers, which we shall call unconfined flows, and those that are finite
in that direction, e.g. channel and pipe flows, which we shall call confined flows (even
though they are all treated as unconfined in the direction of flow). This terminology
follows that used by Escudier, Bornstein & Maxworthy (1982) in a study of the effects
of confinement in experiments on the vortex-breakdown phenomenon. The focus will
be on the qualitative and quantitative changes arising when an unconfined flow is
confined. In practice, at least in laboratory experiments, there are no truly unconfined
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flows; for example, a boundary-layer flow in a wind tunnel is usually modelled as
unconfined in the wall-normal direction but is, of course, confined by the walls of the
wind tunnel itself. What seems clear, however, is that if the outer wall is far enough
away from the location of the shear layer then the presence or otherwise of the outer
wall should have only a small influence on the stability of the flow (if this were not
the case, the unconfined-flow model would have been abandoned long ago).

Nonetheless, we present here a flow where the inclusion of an outer wall has a
strongly destabilizing effect on the flow, however far from the shear layer that wall
is placed. This behaviour arises from an important qualitative change that occurs to
the dispersion relation, in which the continuous spectrum of the unconfined flow is
replaced by the infinite discrete spectrum of the confined flow created by the addition
of the outer wall. This change occurs however far the outer wall is placed from
the shear layer. We now briefly explain the origin of this qualitative change in the
dispersion relation, because it is central to the behaviour reported in this paper.

The continuous spectrum of interest is produced by branch-cuts introduced to
define the roots of square-root functions in the solution to the stability equation in
the uniform flow outside the shear layer. To be more specific, we focus for now on the
simple case of waves v(y) exp[i(αx − ωt)] in an inviscid linearized system, where v is
the velocity component of the wave in the (wall-normal) y-direction, t is time, α is the
wavenumber, ω is the angular frequency and the basic flow U (y) is in the x-direction.
The waves are described in Cartesian coordinates by the Rayleigh equation

v′′ −
(

U ′′

U − c
+ α2

)
v = 0, (1.1)

where c = ω/α is the phase velocity of the wave; see Drazin & Reid (1981). When
the basic flow is a boundary layer over a plate at y =0, with limy→∞ U = U∞, then for
waves with c �= U∞ the Rayleigh equation at large y reduces to

v′′ − α2v =0, (1.2)

with general solution

v = C1 exp(−
√

α2y) + C2 exp(
√

α2y). (1.3)

The square-root symbol is taken to denote the root with positive real part, which
corresponds to taking branch-cuts along the imaginary axes of the complex α-plane.
There are also branch-cuts generating other continuous spectra associated with the
logarithmic behaviour near critical points, where U = c, but we are concerned here
with the branch-cuts of the square roots in the solution outside the boundary layer.

Our choice for the definition of the square root means that the homogeneous outer
boundary condition for the unconfined boundary-layer flow, limy→∞ v = 0, is satisfied
by choosing C2 = 0, which gives

v = C1 exp(−
√

α2y). (1.4)

However, if a plate is placed at a large height y = h above the boundary layer, to
produce a confined flow, then the outer boundary condition is replaced by v(h) = 0
(in the viscous case, the plate would be taken to be moving at speed U∞ so as not to
introduce a boundary layer at the new plate, but it need not be moving in the present
inviscid case because a slip velocity is allowed at the plate). Applying this boundary
condition to (1.3) gives a solution of the form

v = C ′
1 sinh[

√
α2(y − h)]. (1.5)
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Both (1.4) and (1.5) are non-analytic at the branch-cuts used to define the square
roots, but it does not necessarily follow that the dispersion relations associated with
these solutions will also be non-analytic at the branch-cuts. Consider a solution at a
point near a branch-cut in the complex α-plane. If the branch-cut is moved across this

point then the roots of the square-root function will be interchanged, i.e.
√

α2 → −
√

α2.
Under this transformation (1.4) fails to satisfy the same outer boundary condition
for unconfined flow (the boundary condition changes from one of exponential decay,

v′ = −
√

α2v, at large y, to one of exponential growth, v′ =
√

α2v), and so its dispersion
relation, which depends on the boundary conditions, changes discontinuously. The
dispersion relation of the unconfined flow is therefore non-analytic at the branch-cut.
However, (1.5) still satisfies the same outer boundary condition, v(h) = 0, under this
transformation and therefore its dispersion relation is unaffected and so is analytic

at the branch-cut of
√

α2. An explicit example is presented in § 3 confirming that
the introduction of a plate far from a boundary layer has the effect of removing the
branch-cuts due to these square-root functions from the dispersion relation.

Note also that at the imaginary axes of the complex α-plane the ‘sinh’ in (1.5)
becomes ‘sin’, and the oscillatory form of the solution for the confined flow produces
infinitely many roots of the dispersion relation (rather like the standing waves on a
finite length of string or in an organ pipe). The presence of this infinity of normal
modes is also shown explicitly in the example in § 3.

The qualitative difference between the dispersion relation arising from (1.4), which
has a branch-cut, and the dispersion relation arising from (1.5), which does not have
this branch-cut, indicates that the addition of an outer plate at large h represents
a singular perturbation to the dispersion relation. In fact, the presence of the plate
makes only an exponentially small perturbation to the roots of the dispersion relation
for large h, except in a thin region where Re(α) = O(1/h), within which the plate
makes an O(1) change in the dispersion relation. The reason is that the solution (1.4)
decays over a distance y = O(1/Re(α)) and so does not feel the effect of the plate if
h � 1/Re(α) but does if h = O(1/Re(α)).

We now consider an unconfined boundary-layer flow, and instability type, which
can be expected to be profoundly affected by the introduction of an outer plate,
however far away that plate is placed. The flow is disturbed impulsively, but the same
considerations would apply to any causal disturbance introduced at some given time.
In particular, circumstances have been identified where the faster-growing shorter
waves contributing to the impulse propagate away from the source, leaving slower-
growing longer waves that are absolutely unstable and grow in the neighbourhood of
the source. We will show that these longer waves, and therefore the absolute instability,
can be affected by an outer plate placed at any distance from the boundary layer.

The flow exhibiting this behaviour, which will be the subject of this investigation,
is the ‘rotating-disk boundary-layer’ produced when an infinite disk rotates about its
axis of symmetry in an otherwise still fluid. Viscous stresses at the disk surface drag
the fluid elements near the disk around in almost circular paths, and centrifugal forces
cause these elements to spiral outwards. The disk thus acts as a centrifugal fan with
a radial flow component that has a wall-jet character directed away from the axis of
rotation. The fluid thrown outwards in this way is replaced by an axial flow towards
the disk surface. The azimuthal flow component has a typical boundary-layer profile,
increasing monotonically from zero at the disk wall to a constant value proportional
to the angular velocity of the disk and to the distance to the axis of rotation (when
considered, as here, in a frame of reference rotating with the disk). The importance of
this crossflow structure to the flow’s stability was first recognized by Gregory, Stuart &
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Walker (1955), who observed a set of stationary vortices in an experimental study and
explained their appearance in terms of an inviscid inflexional ‘crossflow’ instability.
This crossflow instability generates stationary vortices in many three-dimensional
boundary layers of engineering interest, and such vortices are believed to be involved
in the laminar–turbulent transition process in many of these flows. This provides a
strong practical motivation for studying the instability of the rotating-disk boundary
layer.

However, our motivation here originates from certain qualitative properties of this
instability, discovered more recently, concerning the propagation characteristics of
disturbances in the wall-normal direction, see Healey (2006b); these properties make
this flow particularly susceptible to the presence, or otherwise, of an outer plate. The
present paper builds directly on results of Healey (2006b), and the reader may find
it helpful to refer to that work. Long-wave theories for the properties mentioned
above, developed in Healey (2005) and Healey (2006a), indicate that they should be
present even in a crude model of the rotating disk boundary-layer in which the flow
is represented by piecewise-linear segments and in which disturbances are considered
in the inviscid limit. We present this model in § 2 and show how well it captures the
important qualitative features of the instability of the rotating-disk boundary layer.
The advantage of the model is that an analytical dispersion relation can be derived,
and its roots obtained by a simple Newton iteration, thus avoiding the need for
more-slowly-obtained numerical solutions of the Rayleigh equation. The model also
facilitates the identification of long-wave scalings for various phenomena, which can
in principle be used to obtain long-wave theories for more realistic smooth-velocity
profiles.

In § 3 the model is adapted by imposing an outer plate at a distance above the
boundary layer, and the consequences of the outer plate are investigated. Numerical
solutions of an initial-value problem are obtained in § 4 confirming the predictions
made by the saddle-point theory. Conclusions are drawn in § 5.

2. Model for the stability of a rotating-disk boundary layer
In this section we shall outline the derivation of the basic flow solution and Rayleigh

equation for a rotating-disk boundary layer. A comprehensive review of the stability
of this flow would not be appropriate here, but a few developments that have led
to the present investigation into the effect of adding a plate a large distance from
the boundary layer will be summarized. For a recent review of the stability and
transition of the rotating-disk boundary layer see Saric, Reed & White (2003) and
also a forthcoming special issue of The Journal of Engineering Mathematics containing
experimental, numerical and theoretical studies of instabilities of this flow see Healey
(2007).

2.1. The rotating-disk boundary layer

Suppose that the disk rotates at constant angular velocity Ω∗ in an otherwise still
viscous incompressible fluid of kinematic viscosity ν∗ (in this paper all dimensional
quantities have been given an asterisk subscript). The steady axisymmetric basic flow
can be obtained from the von Kármán (1921) similarity solution:

u∗(r∗, θ, z∗, t∗) = r∗Ω∗U (z), v∗(r∗, θ, z∗, t∗) = r∗Ω∗V (z), (2.1a, b)

w∗(r∗, θ, z∗, t∗) = (ν∗Ω∗)
1/2W (z), p∗(r∗, θ, z∗, t∗) = ρ∗ν∗Ω∗P (z), (2.1c, d )

where r∗, θ and z∗ are cylindrical coordinates rotating with the disk, which lies
at z∗ = 0; u∗, v∗ and w∗ are the radial, azimuthal and axial velocity components
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respectively; p∗ is the pressure, t∗ is the time, ρ∗ is the constant fluid density
and z is the dimensionless axial coordinate scaled on the boundary-layer thickness,
z∗ = (ν∗/Ω∗)

1/2z.
Substituting equations (2.1) into the Navier–Stokes and continuity equations for

incompressible viscous flow in cylindrical coordinates gives a system of nonlinear
ordinary differential equations for U , V , W and P . Small-amplitude disturbances are
added to this basic flow, the disturbance equations are linearized and, far from the
axis of rotation (i.e. many boundary-layer thicknesses from it) a WKB approximation
applies and the disturbances take a wavy form proportional to exp[iRe(αr + βθ −ωt)]
at leading order (we can ignore non-parallel effects in the following inviscid stability
analysis). Here Re = R∗(Ω∗/ν∗)

1/2 is the Reynolds number, assumed large, R∗ is the
distance to the axis of rotation, α is the scaled radial wavenumber, β is the scaled
azimuthal wavenumber, ω is the scaled angular frequency and r and t are the scaled
radius and time respectively. The appearance of Re in the exponent indicates that the
waves are short compared with the distance to the axis of rotation and is the basis
of the WKB approximation. In the inviscid limit the disturbance equations reduce to
the Rayleigh equation

w′′ −
(

Q′′

Q − c
+ γ 2

)
w =0 (2.2)

where

Q =U +
β

α
V, γ 2 = α2 + β2, c =

ω

α
; (2.3a, b, c)

w = w(z) is the axial component of the disturbance velocity and the primes denote
differentiation with respect to z. Note that β Re is an integer, but since we are working
in the large-Re limit we can neglect the implied discretization of β and treat it as a
real variable. However, α and ω are both allowed to become complex in the search
for eigenvalues that correspond to solutions satisfying the homogeneous boundary
conditions

w(0) = 0, lim
z→∞

w(z) = 0. (2.4a, b)

See e.g. Healey (2004) for more details (in the notation used in that paper we have
taken ρ = 1).

Outside the boundary layer, the solution to (2.2) that satisfies the outer boundary

condition (2.4b) is proportional to exp(−
√

γ 2z) when the square-root function, which
has branch-points at α = ± iβ , has its branch cuts lying on the imaginary axes of the
complex α-plane and away from the origin, leaving an analytic strip along the real
axis of the complex α-plane.

2.2. Some relevant stability results for the rotating-disk boundary layer

Most studies of the rotating-disk boundary layer that followed the original work
of Gregory et al. (1955) have focused on the stationary vortices that dominate flow
visualizations. It has been established that these stationary vortices are generated
by points of surface roughness and grow in the direction of increasing radius, thus
corresponding to a convective instability. However, Lingwood (1995) used the spatio-
temporal analysis of Briggs (1964) to show that this flow becomes absolutely unstable
far enough from the axis of rotation. In an absolutely unstable flow, impulsive
disturbances grow both upstream and downstream of the disturbance source and in
time at the location of the source. Briggs’ method involved identifying the dominant
saddle point (often called the pinch-point) of the dispersion relation in the rest frame;
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see Huerre & Monkewitz (1985, 1990) and Huerre (2000) for introductions to, and
reviews of, applications of these ideas in fluid mechanics. Lingwood (1995) located
the pinch-point using numerical solutions of the Rayleigh equation (2.2) and also of
the viscous version of the equation, but in the viscous problem non-parallel terms
were ignored.

Healey (2004) included the non-parallel terms in a local absolute-instability theory
at asymptotically large Reynolds numbers near the upper branch of the neutral curve
for the onset of absolute instability. It was found that there are two saddle points,
and that dominance switches between them at a point along the upper branch of the
neutral curve. The saddle that is dominant at large Reynolds number on the upper
branch of the neutral curve turns out not to be Lingwood’s saddle-point, which is
dominant around the critical Reynolds number for absolute instability. Therefore,
asymptotic descriptions of Lingwood’s pinch-point should be sought along the lower
branch of the neutral curve for absolute instability, where wavelengths increase as
the Reynolds number increases. As a step in this direction, Healey (2006a) derived a
long-wave inviscid theory for the pinch-point in the limit β → 0. It was found that
the pinch-point becomes asymptotically close to the branch-cut along the negative
imaginary axis of the complex α-plane and that the integration contour in the complex
α-plane used to obtain the impulse response can only reach this saddle, and remain
within the valleys of the saddle, if the branch-cut is moved away from the imaginary
axis when β is sufficiently small.

Moving the branch-cut from the imaginary axes of the complex α-plane suggests
that eigenfunctions that grow exponentially with distance from the boundary layer
(sometimes called ‘diverging eigenfunctions’) can become important in this problem,
even though they do not satisfy homogeneous boundary conditions. A detailed
numerical study of the Rayleigh equation at numerically small values of β was
carried out in Healey (2006b); this allowed solutions to be obtained for larger α

and ω than is possible in the long-wave theory. This enabled a global exploration
of the complex α-plane that confirmed that the dominant saddle in the long-wave
regime is indeed the pinch-point and that the branch-cuts should be moved in order
to reach it. A physical interpretation of this behaviour in the spectral plane was also
provided. Frames of reference moving in the z-direction away from the disk were
considered, and it was shown that saddles with exponentially growing eigenfunctions
in fact represent the growth and propagation of disturbances in the wall-normal
direction, in much the same way that the more conventional spatial instability theory,
with complex wavenumbers, describes propagation and growth in the streamwise
direction. Disturbance energy is generated inside the boundary layer and found to
propagate out into the free stream in a way that sustains the exponential growth
observed outside the boundary layer.

It should be noted, however, that outside the boundary layer, there is no mean flow
shear to provide a source of energy for the growth of disturbances and no restoring
force to support wave motion. The presence of wave-like disturbances outside the
boundary layer is a direct consequence of wave-like disturbances inside the boundary
layer, where there is shear to provide energy and a restoring force; the waves outside
the boundary layer are extensions of the waves inside the boundary layer. Nonetheless,
the notion of the propagation of a disturbance outside the boundary layer is still useful
since although the eigenfunctions exist instantaneously in the wall-normal direction,
‘information’, i.e. the disturbance arising from a particular initial-value problem, still
only propagates at finite velocity. In fact, the situation is identical to the more familiar
streamwise propagation, in which a disturbance can be expressed as a superposition
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of harmonic waves existing instantaneously for all x; nevertheless, the disturbance
produced by a localized source still only propagates away from the source at finite
velocity in the streamwise direction.

A further possible problem with modes that cross the imaginary-wavenumber axis
is that their wavelengths become infinitely long. This might seem to violate the WKB
approximation, which is usually justified on the basis that typical wavelengths of
disturbances are short compared with length scales over which the basic flow evolves.
In fact, this requirement of the relative shortness of wavelengths is sufficient, but not
necessary, for the parallel-flow approximation to be applied. In this problem the WKB
approximation causes ∂/∂r to be replaced by iα + ∂/∂r . The flow is approximately
parallel when the ∂/∂r term can be neglected compared with iα. If α is real then this
requires the wavelengths to be sufficiently short that α is sufficiently large (the usual
argument), but in fact it is only necessary for |α| to be sufficiently large, regardless of
the size of αr . Therefore if, as here, αi is finite then non-parallel effects on the local
stability characteristics can be made negligible by increasing the Reynolds number.

Comparisons were also made in Healey (2006b) between in one case numerically
evaluated wavepackets using integration paths that do not cross the imaginary axes of
the complex α-plane, and in the other case using large-time asymptotic saddle-point
theory, in which the contours of the saddle-point (spatial branches), and the saddles
themselves, do cross these axes. This confirmed that the physical solution to the
initial-value problem does not depend on the location of the branch-cuts as long as
they are first placed in accordance with the principle of causality and with radiation
conditions in both wall-normal and wall-parallel directions (i.e. branch-cuts on the
imaginary-wavenumber axes, integration contours on the real-wavenumber axis and,
above all the singularities in the complex-frequency plane) and are not crossed by the
integration contour.

However, as will be shown below, when the outer plate is introduced and the
branch cut of the square root is replaced by an infinite discrete spectrum (i.e. an
infinite number of spatial modes), this discrete spectrum appears along the imaginary
axis and, unlike the branch-cut, cannot be moved. This ‘freezing’ of the location of the
branch-cut represents another qualitative difference between confined and unconfined
flows. This difference will particularly affect flows, such as the rotating-disk boundary
layer for small β , where growth in the wall-normal direction is indicated by unstable
saddle points approaching, or crossing, the imaginary axis of the complex-wavenumber
plane. Such flows will be strongly affected by addition of an outer plate at any distance
from the boundary layer, because the part of the dispersion relation controlling wall-
normal growth crosses the imaginary axis and the presence of the outer plate always
produces a strong modification of the dispersion relation close to the imaginary axis
of the wavenumber plane.

Healey (2005) developed a long-wave theory for the part of the dispersion relation
that describes the wall-normal propagation velocities and growth rates. This theory
reveals that the part of the spatial branch (the contour in the complex-wavenumber
plane of the dispersion relation having a constant imaginary part of the frequency)
that crosses the imaginary axis of the wavenumber plane does not depend on the
curvature of the basic-velocity profile. However, as the real part of the frequency
increases this spatial branch crosses the real axis of the wavenumber plane, and
then the curvature of the basic-flow profile becomes important in determining where
the spatial branch lies. The long-wave theory of the absolute instability presented
in Healey (2006a) showed that the absolute instability is also independent of basic
velocity-profile curvature for long enough waves. Therefore, a model velocity profile
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Figure 1. (a) Basic flow components (UK is the radial component, VK is the azimuthal
component) obtained from von Kármán (1921) similarity variables; see Healey (2006a) for the
equations and method of solution. (b) The model basic-flow components U and V from (2.5).

with piecewise-linear segments should capture both the absolute instability and the
wall-normal growth of the rotating-disk boundary layer but will fail to give the correct
qualitative behaviour for shorter waves.

2.3. The model stability problem

On the basis of these considerations, the following model stability problem is proposed
to demonstrate how adding an outer plate at a large distance from a shear layer
can sometimes dramatically affect the instability characteristics. As discussed above,
it models a flow where growth is expected in the wall-normal direction because the
dominant saddle point is approaching, or crossing, the imaginary axis of the complex-
wavenumber plane. The basic flow has a crossflow structure and axisymmetry, with
radial velocity U (z) and azimuthal velocity V (z) modelled by the three-layered system

U =

⎧⎪⎨
⎪⎩

U1 = 1
5
z for 0 � z � 1,

U2 = 1
15

(4 − z) for 1 <z � 4,

U3 = 0 for z > 4,

V =

⎧⎪⎨
⎪⎩

V1 = − 1
4
z for 0 � z � 1,

V2 = − 1
4
z for 1 <z � 4,

V3 = − 1 for z > 4.

(2.5a, b)

The form of these expressions has been chosen to make explicit the qualitative wall-
jet character of the radial component (the centrifugal-fan effect) and the boundary-
layer character of the azimuthual component, of the rotating-disk boundary layer.
The actual numerical values of the coefficients were chosen simply to give rough
quantitative agreement with the von Kármán similarity solution; see figure 1.

The property U ′′ = V ′′ = 0 of the piecewise-linear profiles (2.5) means that the
Rayleigh equation (2.2) reduces to w′′ − γ 2w =0 within each layer, and so the solution
satisfying this equation and the boundary conditions (2.4) can be written as

w =

⎧⎪⎨
⎪⎩

w1 = sinh(
√

γ 2z) for 0 � z � 1,

w2 = k1 exp(−
√

γ 2z) + k2 exp(
√

γ 2z) for 1 <z � 4,

w3 = k3 exp(−
√

γ 2z) for z > 4,

(2.6)

where k1, k2 and k3 are constants. These constants are determined by ‘jump conditions’
that relate the solution in one layer to an adjacent layer, see Drazin & Reid (1981);
they correspond to the continuity of pressure across layer boundaries and a condition
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that layers neither separate from nor penetrate one another. The jump conditions are

lim
z→zn

{(
wn

Qn − c
− wn+1

Qn+1 − c

)}
= 0, (2.7a)

lim
z→zn

{[(Qn − c)w′
n − Q′

nwn] − [(Qn+1 − c)w′
n+1 − Q′

n+1wn+1]} = 0, (2.7b)

where Qn = Un +(β/α)Vn and z = zn is where the layer with subscript n meets the
layer with subscript n + 1.

Substituting (2.5) and (2.6) into (2.7) for n = 1 and n = 2 gives four equations
for the three unknowns k1, k2 and k3. For these equations to be consistent, a fourth
equation, the dispersion relation relating c and α, must also be satisfied. The dispersion
relation is a quadratic equation in c (or, equivalently, in ω) but is a transcendental
equation in α. We write the dispersion relation as ∆(α, β, ω) = 0; see Appendix A for
the definition of ∆.

2.4. Numerical solutions to the model dispersion relation

The absolute or convective character of the instability is determined by the dominant
saddle point of the dispersion relation. The condition for a saddle point, ∂ω/∂α = 0,
can be expressed as the simultaneous equations ∆ =∆α = 0 and solved using Newton
iteration for a given β , provided that a good enough first estimate for α and ω is
available. An extensive investigation of the complex α-plane is also required in order
to identify the dominant saddle, which will be the one with largest Im(ω) whose valleys
contain the real axes of the complex α-plane for large |Re(α)| (this is equivalent to
identifying the pinch-point in Briggs’ method). Figure 2 shows the eigenvalues at the
dominant saddle (the pinch-point) when the basic flow is given by (2.5), and also
when it is given by the von Kármán similarity solution.

It can be seen that there is excellent qualitative agreement between the pinch-points
produced by the two sets of basic velocity profiles, especially as β is reduced. However,
the pinch-point remains in the lower-right quadrant of the complex α-plane for the
smooth profiles but crosses into the upper-right quadrant for the piecewise-linear
profiles for β > 0.065. This feature might be ‘corrected’ by a different choice of
numerical coefficients in (2.5) or by the addition of one or more layers, but this is
not the part of the parameter range that is of interest here. We are concerned with
smaller values of β .

The long-wave theory in Healey (2006a) shows that, for the pinch-points,
Re(α) = O(β) and Im(α) = O(β3/4), and so for small β the pinch-point approaches
the imaginary α-axis. That theory also shows that the growth rate of the absolute
instability is Im(ω) = O(β9/4). However, the long-wave theory in Healey (2005) shows
that the strongest growth rate on the negative imaginary axis of the complex α-plane
associated with spatial branches originating in the upper half-plane is Im(ω) = O(β2),
which is larger than that of the absolute instability. It was shown in Healey (2006b)
that this behaviour in the complex α-plane leads to growth in the wall-normal
direction. We anticipate that this wall-normal growth will be strongly affected by
the addition of an outer plate and, since all these β-scalings are also true for the
piecewise-linear profiles (2.5), they can be used to investigate the effects of adding an
outer plate to a flow with wall-normal growth. The results will therefore carry over
to the smooth-profile case.

The analysis presented in Healey (2006b) shows that moving the branch-cuts away
from the imaginary α-axis can be helpful in understanding the behaviour of dis-
turbances in the wall-normal direction, but the exponentially growing ‘eigenfunctions’
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Figure 2. The eigenvalues at the pinch-point using the von Kármán solution, (a)–(d), and
using the model (2.5), (e)–(h). The solid lines are numerical solutions of dispersion relations,
i.e. of (2.2) for the von Kármán profiles and (using Newton iteration) of (A 1) for the model
flow (2.5). The dashed lines correspond to explicit expressions derived in the long-wave limit,
(3.26) and (3.27) from Healey (2006a) for (c) and (d) and (B 9c) and (B 9d ) for (g) and (h). The
lower four graphs are enlargements of the regions near the origion in the upper four.

revealed by moving the branch-cuts have no analogue in the corresponding problem
in which an outer plate has been added. Therefore, it is of interest to compare the
topology of the complex α-plane with, and without, an outer plate. An example of
the complex α-plane without an outer plate for modes that decay exponentially with
distance from the wall is shown in figure 3. The key feature reproduced by this model
flow with piecewise-linear velocity profiles is the proximity of the pinch-point to the
imaginary axis of the wavenumber plane. That this behaviour can be captured in
such a crude model confirms the robustness of this behaviour, a robustness which was
predicted originally by the long-wave theories of Healey (2005) and Healey (2006a).



The effect on an absolute instability of adding a solid boundary 39

–0.06 –0.04 –0.02 0 0.02 0.04 0.06 0.08

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

(a)

(b)

Im(α)

Im(α)

–0.010 –0.005 0 0.005 0.010

–0.015

–0.010

–0.005

0

0.005

0.010

v

v

v

h

h

h

h

h

hv

vv

h

h

v

v

Re(α)

Figure 3. Contours of constant Im(ω) � 0 for roots of the dispersion relation for unconfined
disturbances in the model (2.5), in the complex α-plane for β = 0.007 and for decaying
eigenfunctions. The solid disks show the locations of branch-points. (b) is an enlargement of
a region near the origin in (a). The valleys of saddles are marked with a ‘v’ and the hills with
an ‘h’. The branch-cuts from the branch-points at α = ± iβ lie on the imaginary α-axes and
radiate away from the origin. No branch-cuts have been drawn from the branch-points on
the real α-axes at α = 0.003 78 and α = 0.025 67. The dominant saddle (the pinch-point) lies at
α = 0.0146 − 0.0471i and has ω = 0.000 3000 +0.000 1036 i.

The dispersion relation has real coefficients, so the complex conjugates of roots are
also roots of the dispersion relation. Surfaces with Im(ω) � 0 can therefore be obtained
by the reflection of contours in the real α-axis but they are not shown since they would
complicate this diagram even further and since our interest in any case lies with the
unstable part of the dispersion relation. Contours with Im(ω) = 0 are invariant under
reflection in the real α-axis. The branch-points at α = ± iβ = ±0.007i in figure 3
are where the Riemann surface with exponentially decaying eigenfunctions joins the
Riemann surface with ‘eigenfunctions’ that grow exponentially with distance from the
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Figure 4. Contours of constant Im(ω) � 0, for roots of the dispersion relation for unconfined
disturbances in the model (2.5), in the complex α-plane for β = 0.007 and for eigenfunctions
that grow exponentially with distance from the wall (indicated by dashed lines). The solid
disks show the locations of branch-points. (b) is an enlargement of a region near the origin
in (a). Valleys of saddles are marked with a ‘v’ and hills with an ‘h’. The branch-cuts from
the branch-points at α = ± iβ lie on the imaginary α-axes and radiate away from the origin.
The Riemann surface shown in this figure is the analytic continuation of the Rieman surface
shown in figure 3 behind these branch-cuts.

plate; branch-cuts have been introduced along the imaginary α-axes to separate these
surfaces. The Riemann surfaces with growing eigenfunctions are shown in figure 4 and
are the analytic continuations of the surfaces shown in figure 3. There are also branch-
points that connect Riemann surfaces of decaying eigenfunctions on the real α-axis
at α ≈ 0.003 78 (with ω ≈ − 0.000 617) and at α ≈ 0.025 67 (with ω ≈ 0.001 094), see
figure 3. Furthermore, there is a complex conjugate pair of branch-points that connect
Riemann surfaces with exponentially growing eigenfunctions; the branch-point with
Im(ω) > 0 lies at α ≈ 0.005 88 +0.005 71 i (with ω ≈ −0.000 159 + 0.000 660 i) and is
shown in figure 4(b).
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The condition for a branch-point is ∂α/∂ω = 0, i.e. ∆ =∆ω = 0, and contours from
the different Riemann surfaces that join at a branch-point can intersect one another if
both surfaces are plotted on the same diagram. Care is required in the interpretation
of these diagrams. As discussed above, branch-cuts have been introduced from the
branch-points at α = ± iβ, to define the extent of the Riemann surfaces that meet
at these points, in such a way that surfaces of decaying and growing eigenfunctions
are shown in separate diagrams (figures 3 and 4). In order to separate out completely
all the Riemann surfaces, and thereby to remove all intersections of contours from
different surfaces, it would be necessary to introduce further branch-cuts from the
remaining branch-points and additional diagrams corresponding to each Riemann
surface, as in, for example, figure 3 of Healey (2006b). However, in the present case,
the branch-points on the real α-axis connect surfaces with Im(ω) � 0 to surfaces with
Im(ω) � 0, and no such intersections appear near these branch-points in figure 3
because only contours with Im(ω) � 0 are shown. Nonetheless, it can be noted that
the contours become very close to one another in the complex α-plane near these
real-axis branch-points, and there are intersections near the real α-axis near the
saddle point shown in figure 3(b). The branch-point at α ≈ 0.005 88 + 0.005 71 i shown
in figure 4 generates more obvious intersections of contours. Note that the contour
passing through this branch-point (which has Im(ω) = 0.000 66) has a cusp at the
branch-point; contours with Im(ω) > 0.000 66 would pass above this branch-point in
the diagram (though none are shown in figure 4) and contours with Im(ω) < 0.000 66
form self-intersecting loops around the branch-point. With these considerations in
mind, and given the orientations of the hills and valleys of all the saddles, the
topology of the Riemann surfaces can be deduced. Therefore, it is not necessary to
present a series of additional diagrams separating out all the Riemann surfaces.

The significance of figure 3 is that it allows the growth rate of disturbances in
the rest frame to be determined. Calculating the evolution of an impulsive initial
condition into a growing wavepacket requires the evaluation of an integral over all
wavenumbers of the unstable normal modes. The path of integration can be taken
along the real α-axis on Riemann surfaces of solutions with eigenfunctions that decay
in the wall-normal direction. This path can be deformed away from the real α-axis
provided that it does not cross branch-cuts or other singularities. At large times this is
useful because then the integral is dominated by contributions from neighbourhoods
of certain saddle-points. The largest contribution to the solution comes from the
highest saddle-point, i.e. the one with largest Im(ω), whose valleys can contain the
whole path of integration after such an appropriate allowable deformation. (This
is the essence of Briggs’ method, where this dominant saddle-point is called the
‘pinch-point’). The growth rate in the rest frame is given by Im(ω) at the dominant
saddle-point. If Im(ω) > 0 for the dominant saddle-point then the flow is called
absolutely unstable.

The dominant saddle-point in figure 3 corresponds to the saddle-point predicted by
the long-wave theory in Healey (2006a) to approach the branch-cut on the imaginary
α-axis as β → 0. Indeed, the value of β chosen in this diagram is already sufficiently
small that, with the chosen arrangement of branch-cuts, this saddle-point can only
be reached by taking the integration path down the right-hand side of the branch-
cut on the negative imaginary α-axis, and thus outside the valley of the dominant
saddle. The branch-cuts contribute a continuous spectrum to the integral and, in this
case, the continuous-spectrum contribution is stronger than that of the saddle-point
because the branch-cut lies on a part of the Riemann surface that is higher than the
saddle-point. Numerical evaluations of the impulse response using such an integration
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path were presented in Healey (2006b). It was found, surprisingly, that the continuous
spectrum produces a growing wavepacket propagating in the wall-normal direction
away from the wall and out into the free stream. It was further shown that this
behaviour of the continuous spectrum can be understood without having to resort
to numerical evaluation of the integral, but instead by simply moving the branch-cut
away from the imaginary α-axis and considering waves with growing eigenfunctions.
This allows the growth rate, and group velocity, of the wavepacket in the wall-normal
direction to be calculated using a saddle-point theory where the saddle-point condition
includes terms associated with propagation away from the wall.

Moving the branch-cuts from the imaginary axes under these circumstances and
taking integration paths that then cross the imaginary axes thus leads to greater
physical understanding of the instability in the unconfined flow. The use of growing
eigenfunctions captures the exponential growth of disturbances in the wall-normal
direction of initial-value problems for this flow. Figure 5 shows the superposition
of the Riemann surfaces obtained by removing the branch-cuts from the imaginary
axes and thereby joining the surfaces of growing and decaying eigenfunctions. The
integration path then runs from large negative real α on the Riemann surface of
decaying eigenfunctions, along the negative real α-axis and then clockwise around the
branch-point at α = − iβ and onto the Riemann surface of growing eigenfunctions so
as to remain within the left-hand valley of the dominant saddle-point. It then moves
back onto the Riemann surface of decaying eigenfunctions, over the dominant saddle
and onto the positive real-α axis. Equivalently, the integration path could simply
follow the contour that passes through the dominant saddle at α = 0.0146 − 0.0471 i
from above.

However, the next highest saddle-points, at α ≈ −0.0150 + 0.0276 i and
α ≈ 0.0345 + 0.0271 i, do not contribute to the physical solution because the
integration path cannot be deformed to pass through them without either leaving
the valleys of the saddle-points or crossing the branch-cut nominally placed along
the imaginary α-axis in the upper half-plane. The highest saddle-point could be
made accessible to the integration path, because moving the branch-cut allows the
integration path to cross and then re-cross the imaginary α-axis, thus ultimately
returning to the real α-axis on the Riemann surface of solutions with decaying
eigenfunctions. But, for the next highest saddle-points, no movement of the branch-
cut can achieve this because the integration path would always return to the real
α-axis on the Riemann surface of solutions with growing eigenfunctions. Therefore,
moving branch-cuts does not necessarily allow a particular saddle-point to be reached
by the integration path.

The positions of all the saddle-points and branch-points shown in figure 5 depend
on β , as do the heights of the saddle-points. However, the qualitative arrangement
shown in this figure persists for arbitrarily long waves, i.e. as β → 0, and so is generic
over a finite range of β . (The first qualitative change to occur as β is increased above
some critical value is that it no longer becomes necessary to move the branch-cut from
the negative imaginary α-axis in order for the integration path to reach the dominant
saddle, because this saddle then moves away from the imaginary α-axis; see Healey
(2006b) for a sequence of complex α-planes showing this for smooth profiles and for
the physical consequences of this qualitative change). To establish the generality of
the results shown in figure 5 for small β , it is not necessary to repeat those calculations
for various different numerically small values of β; it is sufficient to present long-wave
analytical results for the saddle-points and branch-points. These expressions are given
in Appendix B. The analytical results for the dominant saddle point are given along
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Figure 5. Contours of constant Im(ω) � 0, for roots of the dispersion relation for unconfined
disturbances in the model (2.5), in the complex α-plane for β = 0.007. The solid lines have
eigenfunctions that decay exponentially in the wall-normal direction; the dashed lines have
‘eigenfunctions’ that grow exponentially in the wall-normal direction. The solid disks show the
locations of branch-points. (b) is an enlargement of a region near the origin in (a). The valleys
of saddles are marked with a ‘v’, and the hills with an ‘h’. The pair of saddles close to one
another on the negative real α-axis shown in (b) are on different Riemann surfaces.

with the numerical roots of the dispersion relation for comparison in figures 2(g) and
(h). The analytical results for the branch points at positive real α shown in figure 3(a)
and the numerical roots of the dispersion relation are given in figures 6(a) and 6(b).

In summary, figure 5(a) is found to show features that are a distance O(β3/4)
from the origin, while figure 5(b) shows features that are O(β) from the origin.
Remarkably, the simple model basic flow (2.5) generates a total of four branch-
points and ten saddle-points in the neighbourhood of the origin as β → 0 (those
not shown in figure 5 have Im(ω) < 0). Many of these features are apparent in the
numerical Rayleigh solutions for the smooth-velocity profiles presented in Healey
(2006b); e.g. figure 3 of that paper shows the branch-point (B 3) and the saddle-points
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Figure 6. Numerical solutions to the dispersion relation for unconfined flow for the pair of
branch-points on the real α-axis (solid lines) and, for comparision, the long-wave analytical
results (dashed lines). The wavenumbers at the branch points are shown in (a) and the
frequencies in (b). Branch-point A is given by (B 3) for small β , and B is given by (B 2)
for small β . At β = 0.007, branch-point A lies at α = 0.025 67 and branch-point B lies at
α = 0.003 78 in figure 3.

(B 9) and (B 9) for β = 0.036, and a distorted version of figure 3 of the present paper
can be seen in figure 4(d) of that paper.

As the wavelengths increase, all the branch-points and saddle-points identified
here using the piecewise-linear model will correspond more and more closely to
branch-points and saddle-points for smooth profiles, because this is the limit in which
piecewise-linear profiles give the most accurate stability predictions. This justifies
using the model (2.5) to investigate the effect of adding an outer boundary to the
disturbances some distance outside the boundary layer, for relatively long waves.

3. Model boundary-layer flow with an outer plate
With an outer plate the basic flow (2.5) is unchanged but the outer boundary

condition on disturbances, (2.4b), is replaced by

w(h) = 0, (3.1)

where h > 4. This corresponds to adding a plate at z = h above the boundary layer.
Within the inviscid approximation, the axial basic-flow component is neglected in the
derivation of (2.2) and so does not appear in the model (2.5) either. The basic flow is
therefore not altered at leading order by introducing a plate high above the boundary
layer. The solution (2.6) is replaced by

w =

⎧⎪⎪⎨
⎪⎪⎩

w1 = sinh(
√

γ 2z) for 0 � z � 1,

w2 = k1 exp(−
√

γ 2z) + k2 exp(
√

γ 2z) for 1 < z � 4,

w3 = k′
3 sinh[

√
γ 2(z − h)] for z > 4,

(3.2)

which satisfies (3.1). Applying the jump conditions (2.7) to the slution (3.2) and
eliminating the constants k1, k2 and k′

3 leads to the dispersion relation for the problem
with an outer plate, which we write as F (α, β, ω, h) = 0; see Appendix C for the
explicit expression.

It can be seen that F = 0 is invariant under
√

γ 2 → −
√

γ 2, so that essentially
the branch-cut associated with this square root has been removed from the
dispersion relation, i.e. there are no purely exponentially growing, nor decaying,
eigenfunctions. As with ∆, F is quadratic in ω and includes exponentials in α.
However, when the outer plate is far enough from the boundary layer, i.e. when
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Re(
√

γ 2)h � 1, k′
3 sinh[

√
γ 2(z − h)] ∼ k3 exp(−

√
γ 2z) for suitable k′

3, except close to
z = h. Therefore, the dispersion relation F = 0 has essentially the same roots as ∆ =0

when Re(
√

γ 2)h � 1 because then (2.6) and (3.2) differ by only an exponentially
small term. This equivalence can also be seen from an examination of the dispersion
relations ∆ =0 and F = 0 given in Appendices A and C respectively.

Nonetheless, however large h is, sufficiently close to the imaginary α-axis, i.e. when

Re(
√

γ 2) = O(h−1) or equivalently when Re(α) = O(h−1), since β is real, the change in
outer boundary condition becomes important because then the sinh function cannot
be approximated by a single exponential function. The change that this brings about
in the dispersion relation close to the imaginary α-axis follows directly from the
coefficient of ω2 in the dispersion relations. The coefficient of ω2 in ∆ has no zeros

but in F has the factor sinh(
√

γ 2h), which has zeros along the imaginary α-axis at

α = ± i

[
β2 +

(nπ

h

)2
]1/2

, (3.3)

where n is an integer. The significance of (3.3) is that the roots of the dispersion
relation F = 0 have |ω| → ∞ at these points in the complex α-plane for all integer n

except n= 0. These points are therefore the poles of roots of the dispersion relation
ω =ω(α). In fact, for any given Im(ω) there will be an associated contour in the
complex α-plane starting, or finishing, on each pole in ω given by (3.3). There
are an infinite number of these poles along the imaginary α-axis, and therefore an
infinite number of spatial branches (contours of fixed Im(ω) in the complex α-plane)
near the imaginary α-axis. As h → ∞ the poles become closer to one another and
approach α = ±iβ , where branch-points lie in the unconfined flow, but the interval
−β < Im(α) < β , which is analytic in the unconfined flow, is always free of poles. The
accumulation of poles in the singular limit h → ∞ corresponds to the discretization
of the branch-cuts that exist in the unconfined problem.

The poles (3.3) are fundamental to the structure of the dispersion relation close to
the imaginary axis of the complex α-plane for confined flows. It will be shown below
that a pair of branch-points and also a pair of saddle-points can be associated with
each pole. The branch-cut in the unconfined flow is therefore replaced in the confined
flow by an infinite number of poles, an infinite number of spatial branches, an infinite
number of saddle-points and an infinite number of branch-points, which generates
an infinite number of additional branch-cuts.

3.1. Analytical large-h results

In this subsection we take h � 1. This allows the structure surrounding each pole to
be determined and makes it unnecessary to obtain more than a few sets of numerical
solutions to the dispersion relation F = 0.

Note that, as mentioned above, the branch-points at α = ±iβ in the unconfined
flow are not poles in the confined flow even though they correspond to n= 0 in (3.3).
In the unconfined flow ω = 0 and ω =(−1/4 ± i/5)β at the branch-points at α = ± iβ ,
and, by the addition of an outer plate at large h, these roots are shifted to

ω = −400

41

(
1

4
± i

5

)
β

h
+ O(h−2), ω =

(
−1

4
± i

5

)
β +

4(80 + 59i)

5 × 41

β

h
+O(h−2).

(3.4a, b)

Therefore the eigenvalues at α = ± iβ are subject only to a regular perturbation.
The rest of the imaginary axes for |Im(α)| > β are subject to a singular perturbation
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by the addition of an outer plate at large h. In what follows, we shall consider
neighbourhoods of the imaginary α-axis with Im(α) < − β , since figure 5 shows that
modifications in this region can affect the integration path through the valleys of the
dominant saddle-point.

There are two branch-points associated with the nth pole on the negative imaginary
α-axis (their complex conjugates are associated with the nth pole on the positive
imaginary α-axis) and the branch-point with Im(ω) > 0 is found to be given by

α = −i

[
β2 +

(nπ

h

)2
]1/2

− 16

412
(49 − 31i)

[
3(6 + i) − 5(1 − i)

√
4 + 15i

] (nπ)2

βh3
+ O(h−4), (3.5a)

ω = − 1

104
(5 + i)

(
5 − i

√
4 + 15i

)
β +O(h−1), (3.5b)

for n2 � h3. At leading order the growth rate at these branch-points, Im(ω) ∼
0.079 06 β , is independent of n and h, and Re(α) ∼ 25.02n2/(βh3), so the branch-
points move further from the imaginary α-axis as n increases. Clearly the first term in
(3.5a) could be expanded for large h, but we wish to emphasize the relation between
the position of these branch-points and the poles given by (3.3).

There are also two saddle-points associated with the nth pole on the negative
imaginary α-axis. While the branch-points are a distance O(h−3) from each pole, the
saddle-points are further away; they are O(h−2) from each pole, which is comparable
with the distance between poles. The member of each pair with Im(ω) > 0 is found
by substituting

α = − i
(
β2 +

αs

h2

)1/2

+ · · · , ω =
ωs

h
+ · · · (3.6a, b)

into F = 0 and Fα = 0 (the other saddle-point is found by using ω = −(1/4 + i/5)β +
ωs/h instead, but it has Im(ω) < 0). Eliminating ωs between F = 0 and Fα = 0 at
leading order in h leads to a transcendental equation for αs:

sin(2
√

αs) = 2
√

αs. (3.7)

The frequency at a saddle-point is then given by

ωs = − 400

41

(
1

4
− i

5

)
√

αs cot(
√

αs)β. (3.8)

There are infinitely many solutions to (3.7), e.g. αs ≈ 12.14 + 10.38 i, 45.49 +
23.30i, 98.95 +37.61i, . . .. However, an asymptotic solution to (3.7) can be found
for large αs (but not too large; in particular, we require 1 � αs � h); the first few
terms are

αs ∼ π2n2 + iπn ln(4πn)+
π2

2
n − 1

4
[ln(4πn)]2 +

iπ − 2

4
ln(4πn) +

π(π + 4i)

16
+ · · · (3.9)

where n is a large integer; it terms out that n need not be very large as (3.9) gives αs

to within a few per cent even for n= 1.
The first term in (3.9) corresponds to the nth pole, and the subsequent terms

describe with increasing accuracy the position of the saddle-point relative to the nth
pole. If the leading-order approximation, αs = π2n2, is substituted into (3.8) then a
division by zero occurs, as expected, since αs = π2n2 corresponds to the nth pole.
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Figure 7. Contours of constant Im(ω) � 0 for roots of the dispersion relation F = 0 in the
complex α-plane for β = 0.007 and with the outer plate at h = 500. The solid disks show the
locations of poles given by (3.3) for n= 1, 2, . . . , 10 on the imaginary α-axis. As before, the
valleys of saddle-points are marked with a ‘v’ and the hills with an ‘h’, and the two saddle-points
marked in this way correspond to those shown in figure 3. The dominant saddle for this confined
problem, labelled P , lies at α =0.003 31 − 0.0148i and has ω = 0.000 1684 +0.000 1664 i.

However, substituting the whole of (3.9) into (3.8) leads to

ωs ∼ 400

41

(
1

5
+

i

4

)
β

[
πn+

i

2
ln(4πn) +

π + 2i

4
+ · · ·

]
(3.10)

where we require n � h for this result to hold.
These analytical results underpin the following numerical results.

3.2. Numerical results for large finite h

In this subsection we consider the case β = 0.007, which corresponds to figures 3–5,
and take h = 500. This value of h is large enough for the position of the saddle that
was dominant in figure 3 to be unaffected by the presence of the outer plate but is
not so large that the number of poles, branch-points and saddle-points clustered near
the imaginary α-axis becomes unmanagable. Figure 7 shows the complex α-plane
close to the negative imaginary α-axis. The two saddle-points whose valleys and
hills have been indicated lie at α ≈ 0.014 551 − 0.047 076 i and α ≈ −0.005 8908. The
corresponding values for the unconfined flow are α ≈ 0.014 552 − 0.047 074 i (which
is the pinch-point for the unconfined flow) and α ≈ −0.005 8713, respectively. The
values of ω at these saddle points are also not significantly affected by adding the
outer plate, confirming that h = 500 is large enough for the outer plate not to affect
significantly features away from the imaginary α-axis.

However, as expected, the contours near the imaginary α-axis for Im(α) < − β are
dramatically different from those of the unconfined case shown in figure 3. Contours
do indeed start and finish on each pole given by (3.3), and a saddle-point with
Im(ω) > 0 can be associated with each pole as predicted by (3.6) and (3.9). These
large-h asymptotic predictions for the positions of the saddle-points are accurate
enough, at these parameter values, to be used to give first guesses that will allow
a Newton iteration to converge on the saddle-points in the numerical solution of
F = Fα = 0.
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Figure 8. Contours of constant Im(ω), i.e. spatial branches, for the model pole ω =1/α in
the complex α-plane.

The orientation of the hills and valleys of the additional saddle-points can be
inferred from the positions of the contours passing through each saddle-point relative
to the hills and valleys of the saddle-point at α ≈ 0.014 551 − 0.047 076 i. Broadly
speaking, the valleys lie above and below the additional saddle-points and their hills
lie to the left and right of the saddle-points (however, the lowest additional saddle-
point in figure 7 is somewhat rotated). The relative heights of each saddle are also
easily deduced: for example, if a contour passing through one saddle lies on the hill
of a second saddle then the first saddle lies above the second saddle, etc. Note that
there are pairs of contours, emanating from the left of each additional saddle-point,
that terminate on the same pole, creating the impression that a maximum has been
enclosed by these contours. There can be no maxima or minima of functions of
complex variables, but there are families of closed contours close to a pole. Figure 8
shows the dipole structure of the contours of constant Im(ω) for the model pole
ω = 1/α. The contours form circles, of various radii, tangent to the origin. In this case
contours above the origin with decreasing radius have increasing Im(1/α), while those
below the origin of decreasing radius have increasingly negative Im(1/α). Sufficiently
close to each pole in figure 7 the patterns of contours resemble those in figure 8,
the orientation of the axes of symmetry being determined by the argument of the
coefficient of the pole.

However, the situation in figure 7 is complicated by the presence of a pair of branch-
points close, i.e. of distance O(h−3), to each pole. The effect of the branch-points on
the contours is to ‘pull’ the latter close together near the branch-points. Figure 9
shows a selection of contours with Im(ω) > 0 close to the negative imaginary α-axis.
The nested closed contours tangent to the middle pole in the diagram are like those in
the lower half-plane of figure 8. As Im(ω) decreases, the closed contours expand until
they come close to the branch-points and then they ‘balloon’ out of the gap between
the branch-points, expanding rapidly to meet the saddle-point associated with each
pole. A further reduction in Im(ω) causes the balloon to burst, and the contours no
longer follow closed paths but either connect to adjacent poles or continue away
from the imaginary α-axis to join up with the contours that make up the rest of the
complex α-plane. If Im(ω) is reduced to negative values then the contours connecting
adjacent poles reach a saddle-point in the left half-plane (mentioned just above (3.6)).
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Figure 9. Contours of constant Im(ω) > 0 for roots of the dispersion relation F = 0 in the
complex α-plane for β = 0.007 and with the outer plate at h = 400 (h has been reduced relative
to its value in figure 7 to move the branch-points a little further from the imaginary α-axis). The
larger solid disks show the locations of the three poles given by (3.3) when n= 14, 15, 16 on
the imaginary α-axis. The smaller solid disks show the locations of the branch-points predicted
by (3.5) and the corresponding branch-points with Im(ω) < 0. The valleys of saddle-points are
marked with a ‘v’ and the hills with an ‘h’.

The arrangement of contours around a typical pole with its attendant branch-
points and saddle-points, shown in figure 9, constitutes the fundamental building
block which, when repeated along the imaginary α-axis infinitely many times, leads
to the interlocking structure seen in figure 7 that replaces the single branch-cut of the
unconfined problem. This fundamental building block shrinks towards the imaginary
α-axis as h increases, in the manner given by the large-h results of § 3.1.

Of fundamental importance is the observation that the pinch-point of figure 3 does
not correspond to the pinch-point of figure 7. The pinch-point in figure 7, marked
by P , lies at α ≈ 0.003 307 − 0.014 80 i, and has ω ≈ 0.000 1684 + 0.000 1664 i, and
so the strength of the absolute instability has been increased by adding an outer
plate at h = 500 when β = 0.007 because the pinch-point in the unconfined flow has
Im(ω) ≈ 0.000 1036. The pinch-point in this confined flow corresponds to the saddle
with n= 2 in (3.9). The integration path can follow the highest contour drawn on
figure 7 that returns to the real axis.

The mechanism producing the increase in strength of the absolute instability when
the outer plate is introduced arises from the property of the dispersion relation for
the unconfined flow ∆ =0, which is apparent in figure 3, that the hill above the
pinch-point in this figure extends across part of the imaginary α-axis. As explained in
Healey (2006b), the contour that is tangent to the imaginary α-axis, yielding a local
maximum in temporal growth rate along this α-axis, also gives the growth rate of
a wavepacket propagating in the wall-normal direction. When, as here, this growth
rate is higher than that of the pinch-point in the unconfined flow, the imposition of
an outer boundary will always lead to an increase in the growth rate of the absolute
instability because some additional saddles predicted by (3.9) will lie in the hill of the
original pinch-point and the highest of these additional saddle-points will become the
pinch-point.

It follows that when h → ∞ and the saddle-points predicted by (3.9) approach
the imaginary α-axis, the growth rate of the absolute instability generated by the
particular value of n in (3.9) that gives the pinch-point approaches that of the contour
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Figure 10. The solid line shows how the growth rate of the absolute instability of the confined
flow depends on the height h of the plate above the boundary layer for β = 0.007. The dashed
line U gives the growth rate of the absolute instability of the unconfined flow, and the dashed
line C gives the growth rate of the convective instability of the unconfined flow propagation in
the wall-normal direction; this is seen to be the large-h asymptote of the absolute instability
of the confined flow.

that is tangent to the imaginary α-axis in the unconfined flow. In other words, the
growth rate of the absolute instability of the confined flow approaches the growth
rate of the wavepacket propagating in the wall-normal direction in the unconfined
flow as h increases. Therefore, in this case the absolute instability of the confined
flow in the limit h → ∞ is different from the absolute instability of the unconfined
flow.

These arguments demonstrate that the growth rate of the absolute instability in the
confined flow approaches its asymptotic value from above as h increases. However,
reducing h eventually has a stabilizing effect on the absolute instability. Figure 10
shows that for β = 0.007 the maximum growth rate of the absolute instability occurs
at h ≈ 235. At this h the pinch-point corresponds to n= 1 in (3.9), but as h

increases so does n. The discontinuities in gradient of the curve in figure 10, e.g. at
h ≈ 450, occur when the pinch-point switches from one value of n to an adjacent
value of n. This figure also confirms that, for β =0.007, as h increases the growth
rate of the absolute instability of the confined flow asymptotes towards the growth
rate of a wavepacket propagating in the wall-normal direction of the unconfined
flow and not towards the growth rate of the absolute instability of the unconfined
flow.

The large-h results of § 3.1 show how the saddle-points associated with the poles
on the imaginary α-axis approach this axis as h increases. Conversely, as h is reduced
these saddles move away from the imaginary α-axis and can pass between the saddles
of the unconfined flow shown in figure 3. Figure 11 shows the loci, as h is varied,
of saddle-points in the part of the complex α-plane near the dominant saddle of the
unconfined flow. This figure shows how the pinch-point of the unconfined flow can
become surrounded by, and interact with, the additional saddle points created by
adding a bounding plate when h is reduced. However, these phenomena associated
with more strongly confined flows are beyond the scope of the present work. When
h is reduced, eventually the outer plate will have a significant effect on the basic flow
and the model (2.5) will become unreliable. This figure for the confined flow also
demonstrates an essential connection with figure 3 for the unconfined flow in that as
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Figure 11. The numerical labels of the curves correspond to the values of n in (3.9) for
saddle points. As h is reduced, these saddles move down the diagram and away from the
imaginary α-axis. The paths of all the saddles are shown for h � 1400 and β = 0.007. The
saddle corresponding to the pinch-point in the unconfined flow spirals around its position in
figure 3 as h → ∞. This saddle comes close to the saddle n= 4 when h =292. The saddle
that is the pinch-point at any given value of h is shown by a bold line. The n = 1 saddle is
the pinch-point for h < 448.9, the n = 2 saddle is the pinch-point for 448.9 < h < 698.5, the
n = 3 saddle is the pinch-point for 698.5 <h< 934.3, the n = 4 saddle is the pinch-point for
934.3 < h < 1164, the n = 5 saddle is the pinch-point for 1164<h < 1391 etc. The disk on the
imaginary axis shows where the pinch-point approaches as h → ∞, and corresponds to where
the contour in figure 3 (for the unconfined flow) touches the imaginary axis.

h → ∞ the pinch-point of the confined flow approaches the point on the imaginary
axis touched by a spatial branch (contour) of the unconfined flow.

3.3. Long waves and large h

All the preceding results have been for finite, though numerically small, values of
β because this is the range where the dominant saddle of the unconfined flow
approaches the imaginary α-axis. The smaller β is, the greater the difference between
the growth rate of the absolute instability and the convective growth rate of wall-
normal propagating waves of the unconfined flow. Figure 10 shows that this latter
growth rate gives the large-h asymptote of the growth rate of the absolute instability
of the confined flow, so the lines marked C and U move further apart as β is reduced.
In fact, for small β the maximum growth rate shown in figure 10 moves to larger h

and can be calculated by linking small β and large h within the following long-wave
scalings:

α = α0β + · · · , ω = ω0β
2 + · · · , h=

h0

β
+ · · · (3.11a, b, c)

where β � 1. Substituting (3.11) into F = Fα = 0, equating the leading-order terms
in β and solving for the dominant saddle that gives the maximum growth rate as h

is varied, we obtain

α ∼ (0.5441 − 1.746i)β, ω ∼ (3.190 + 3.506i)β2, h ∼ 2.244

β
. (3.12a, b, c)

This growth rate, Im(ω) ∼ 3.506β2, follows the same β-scaling as the growth rate in
the limit h → ∞, which is Im(ω) ∼ 1.952β2, obtained using the long-wave theory of
Healey (2005) for the growth rate of the wall-normal propagation.
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4. Numerical initial-value calculations
As discussed in § 2.1, physical disturbances originating from specified initial-value

and boundary-value conditions can be expressed as a superposition of normal modes
proportional to exp[iRe(αr + βθ − ωt)]. In particular, the physical solution for the
vertical component of the disturbance velocity, ŵ(r, θ, z, t), produced by an impulsive
disturbance at r = r0, t = 0, z = 0, with azimuthal wavenumber n= βRe, for confined
disturbances, is given by an inverse double Fourier transform of the form

ŵ(r, θ, z, t) =
einθ

4π2

∫
A

∫
B

w(z)

F
exp[iRe(αr − ωt)] dω dα, (4.1)

where w(z) is the solution of the Rayleigh equation for α, β and ω. The integration
contours A and B run from −∞ to +∞, A lying along the real axis of the complex α-
plane (which is free from singularities because at finite t the disturbance only extends
over a finite range of r , ensuring the convergence of the α-integral) and B lying above
all singularities in the complex ω-plane, corresponding to the Bromwich contour in
Laplace transforms (in oder to respect the principle of causality, i.e. ŵ = 0 for t < 0).
This representation of a disturbance in terms of a double integral is discussed in § 7.2
of Schmid & Henningson (2001). In principle, a disturbance localized in the azimuthal
direction as well can then be constructed by summing over n, but we shall consider
only β = 0.007, the value used earlier in the exploration of the saddle points in the
complex α-planes. The dispersion function F must appear in the denominator so that
the roots of the dispersion relation F = 0 generate poles in the integrand, which give
rise to the normal modes of the system by residue theory. Specifically, the ω-integral
is evaluated by closing B in the lower half-plane (to give the solution for t > 0), and
the solution is expressed in terms of the residues of the poles produced by the simple
zeros of F to give

ŵ(r, θ, z, t) = − ieinθ

2π

∫
A

w(z)

Fω

exp{iRe[αr − ω(α)t]} dα, (4.2)

where ω =ω(α) is a root of the dispersion relation F =0. In obtaining (4.2), the
contribution from the continuous spectrum associated with the logarithmic singularity
at critical points (where the phase velocity equals the local mean velocity) has been
ignored. In fact, there is no logarithmic singularity for the piecewise-linear model
for the mean flow considered here, nor is there a logarithmic singularity for smooth
profiles when viscosity is included. If there is more than one unstable temporal mode
then the physical solution is a sum of integrals of the type shown in (4.2).

At large times (4.2) is dominated by the contributions made by certain saddle
points of the exponent, as identified in figure 3 for unconfined disturbances and
in figure 7 for confined disturbances. However, here we evaluate (4.2) numerically
to obtain an independent confirmation of the behaviour predicted by the saddle-
point analysis, and also to discover the behaviour at finite times. This integral must
be evaluated at relatively large t in order to verify the predictions made by the
saddle-point theory, and then the integrand is highly oscillatory along part of the
positive real α-axis. In order to improve the behaviour of the integrand, so that it
can be straightforwardly integrated numerically, the path A is chosen to follow the
real α-axis from a large negative value up to α =0.0008; then it drops vertically in
the complex α-plane to α = 0.0008 − 0.047 07 i, and is taken horizontally across the
dominant saddle for unconfined disturbances and continued until the integrand has
decayed to negligible values. The vertical part of path A, Re(α) = 0.0008, runs close
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Figure 12. U is the eigenfunction for the dominant saddle of the unconfined flow at
α = 0.0146 − 0.0471i in figure 3; C is the eigenfunction for the dominant saddle of the confined
flow at α = 0.003 31 − 0.0148i in figure 7. Both eigenfunctions have been normalized to give
|ŵ(z = 4)| =1 at the edge of the boundary layer, and they are shown for 4 � z � h = 3000.

to many of the additional saddles created by confinement shown in figure 7, and the
horizontal part of the path A, Im(α) = −0.047 07, picks up the dominant saddle of
the unconfined flow.

Roots of the dispersion relation, and Fω, were evaluated at closely spaced points
along A and linear interpolation was used in the intervals between these points to
approximate these quantities at arbitrary points on A. The integral (4.2) was evaluated
as a sum of integrals over each of these intervals. The number of intervals was varied
to ensure convergence over the ranges of t and z used. The outer plate was placed far
outside the boundary layer, at h = 3000, and the disturbance profile ŵ was calculated
as a function of z for r = r0 and θ = 0 for times up to t = 1.35 × 106.

The disturbance profile is a superposition of eigenfunctions of normal modes but,
as time increases, it is expected to become dominated by the normal modes at the
dominant saddle points. The eigenfunctions for the dominant saddle points in the
confined and unconfined flows are shown in figure 12. The magnitude of the dominant
eigenfunction for the unconfined flow decays relatively quickly and monotonically with
distance from the boundary layer and has such a small value at z = h = 3000 that the
addition of the outer plate has only a negligible effect on it. However, the addition
of the outer plate generates the additional saddle points shown in figure 7 near the
imaginary α-axis, one of which produces the new dominant saddle for the confined
flow. Figure 12 shows not only that the eigenfunction of this new saddle decays
much more slowly, as expected because it lies closer to the imaginary α-axis, but also
that the magnitude of the eigenfuction oscillates as it approaches the outer plate at
z = h = 3000. This is the result of interference between the two exponential terms that
make up the sinh fuction that describes the eigenfunction outside the boundary layer;
see (3.2).

A series of graphs showing |ŵ(z)| for an impulsive disturbance at a sequence of
increasing times is presented in figure 13. It shows how the disturbance profile evolves
from a state characteristic of the dominant saddle of the unconfined flow, see 13(a),
into a growing wavepacket propagating out of the boundary layer towards the outer
plate, see 13(b)–13(f), which is the fundamental property of the unconfined flow
that motivated this paper. The qualitative similarity between this initial sequence of
diagrams and figure 12 of Healey (2006b) obtained using smooth profiles verifies that
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Figure 13. Plots of the disturbance magnitude |ŵ| as a function of z at successive times. In
each plot the vertical axis is rescaled so that the disturbance fills the range (if this is not done,
and the same vertical scale used in each plot, then very little of each disturbance would be
seen in most of the plots because the amplitude is growing exponentially with time) and the
horizontal range is 4 � z � h = 3000. (a) is at t =2 × 105, (b) is at t = 2.5 × 105, etc. at equal
time intervals of 5 × 104 up to (x) at t = 1.35 × 106.

the piecewise-linear model makes reliable predictions. As the disturbance approaches
the outer plate its magnitude starts to oscillate near the outer plate, see 13(g)–
13(k), in a manner similar to that of the dominant saddle of the confined flow.
However, there are long-term transients before the disturbance approaches that of the
dominant saddle of the unconfined flow. In particular, a second growing wavepacket
propagates from the boundary layer out towards the outer plate, see 13(r)–13(v). Even
at figure 13(x) the asymptotic large-time behaviour predicted by curve C in figure 12
has probably not yet been reached, although it does show qualitative similarities.
However, the transients would die out more quickly for smaller h, as discussed
below.

It was shown in Healey (2006b) that the propagation and growth of a wavepacket
outside, and away from, an unconfined boundary layer arises from a propagation of
energy downstream inside the boundary layer, then out into the free stream and finally
back upstream to the streamwise location where the disturbance was introduced; see
figure 11 of that paper. Within this context, the appearance of a second outward
propagating wavepacket in the confined flow can be interpreted as the result of
multiple reflections of parts of the disturbance between the wall adjacent to the
boundary layer and the outer plate, though calculations analogous to those in Healey
(2006b) have not been carried out to verify this interpretation in detail.

However, the presence of long-term transients can be anticipated from the
arrangement of saddle-points near the imaginary α-axis in figure 7. There are many
saddles contributing to the physical solution, and they are close to one another in
height. Therefore, it takes a long time for the contribution from the highest of these
saddles to dominate the contributions from the other saddles. Up until such times the
transient behaviour is controlled by interference between the contributions of these
saddles, which corresponds to reflections between the plates. It can be noted that, as
the separation of the plates is increased, the saddle points near the imaginary axis
become closer to one another and closer in height too, so that the period of transient
behaviour, i.e. of reflections, increases also.
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5. Conclusions
The inviscid stability characteristics of a model boundary-layer flow, based on the

rotating-disk boundary layer, have been studied. The effect on the flow’s stability
of adding a plate, with an impermeable boundary condition, has been investigated.
As expected, the continuous spectrum associated with the exponential decay of
disturbances in the unconfined flow is replaced by an infinite discrete spectrum when
the plate is introduced at a height h above the boundary layer. The main finding is
that, for a certain parameter range, the growth rate of the absolute instability of the
confined flow as h → ∞ does not tend to the same value as for the unconfined flow.
In particular, the growth rate of the absolute instability for the confined flow can be
significantly stronger than for the unconfined flow.

The circumstances for this unexpected behaviour to occur have been identified. They
are the same circumstances under which disturbances to an unconfined flow will show
exponential growth and propagation in the direction across the stream (e.g. in the wall-
normal direction for a boundary-layer flow). Healey (2006b) showed that this occurs
when the dominant saddle of the dispersion relation (the pinch-point) approaches, or
crosses, the imaginary axis of the complex-wavenumber plane. Crossing this imaginary
axis, and moving the branch-cut from a square root in the solution accordingly, leads
to the consideration of ‘eigenfunctions’ that grow, instead of decay, exponentially with
distance in the wall-normal direction. Healey (2006b) showed that this exponential
growth of the eigenfunctions describes the actual exponential growth of initial-value
problems. This was shown to happen for inviscid waves of small enough azimuthal
wavenumber in the rotating-disk boundary layer, and this observation motivated the
present study and the model piecewise-linear flow considered here.

When such a flow is confined by introducing a plate above the boundary layer,
the branch-cut of the unconfined flow, which could be moved from the imaginary
wavenumber axis to reveal stronger growth rates in the wall-normal direction,
is replaced by an infinite discrete spectrum, which cannot be moved from the
imaginary axis. Nonetheless, this stronger growth on the Riemann sheet of diverging
eigenfunctions still manifests itself when the plate is added. The replacement of the
branch-cut by an the infinite discrete spectrum constricts the integration path, forcing
it through a region of stronger growth than that of the pinch-point of the unconfined
flow. It has been shown that an infinite number of saddle-points is also created when
the bounding plate is introduced. One of these saddle-points then has a larger Im(ω)
than the pinch-point of the unconfined flow and replaces it as the pinch-point of the
confined flow. It has been verified numerically that as h → ∞ this new pinch-point of
the confined flow has the growth rate of the fastest growing waves of the convective
instability in the wall-normal direction of the unconfined flow.

Healey (2006b) showed that the dominant saddle also crosses the imaginary
wavenumber in frames of reference moving radially outwards at the leading edge
of the wavepacket, but it does not do so in frames of reference moving radially
outwards at the velocity of the fastest growing part of the wavepacket. The growth
rate of the fastest growing part of the wavepacket corresponds to the growth rate of the
most unstable waves in a temporal-stability analysis. This explains why confinement
can destabilize an absolute instability (and in this case the instability at the leading
edge of the wavepacket too) and yet not affect the most unstable temporal waves,
when the plate is far from the boundary layer.

Numerical solutions to the initial-value problem have also been obtained by
evaluating inverse Fourier transforms of the solutions in wavenumber and frequency
space. These solutions follow qualitatively the predictions of the saddle-point theory
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and show that long-term transient behaviour will be present; these consist in part of
reflections of the disturbance between the imposed outer plate and the plate adjacent
to the boundary layer.

Our findings for an inviscid disturbance, with small scaled azimuthal wavenumbers
β , to the model flow (2.5) may be summarized as follows. Applying the theory
of Healey (2006a), we find that the growth rate of the absolute instability of the
unconfined flow is Im(ω) ∼ 4.985β9/4; see (B 9d ). Applying the theory of Healey
(2005), we find that the unconfined flow supports a convective instability in the
wall-normal direction with growth rate Im(ω) ∼ 1.952β2, and this has been shown
to be the growth rate of the absolute instability as h → ∞ for fixed small β for
the confined flow. The absolute instability for the confined flow is therefore O(β−1/4)
larger than the absolute instability of the unconfined flow as β → 0. The strongest
absolute instability for the confined flow for small β occurs when h ∼ 2.244/β , giving a
growth rate Im(ω) ∼ 3.506β2. These scalings apply to inviscid disturbances to smooth
basic-velocity profiles as well (but the numerical coefficients depend on the details of
the particular flow under consideration). Note that these asymptotic formulae give
respectable quantitative agreement, when evaluated at β = 0.007, with the numerical
results shown in figure 10. The branch-cut of the unconfined flow has been found to
be replaced in the confined flow by the interlocking structure of poles, branch-points
and saddle-points shown in figure 9, which connects to the rest of the complex-
wavenumber plane in the manner shown in figure 7. When the bounding plate is far
from the boundary layer, there is a pair of branch-points a distance O(h−3) from each
pole on the imaginary axis and a pair of saddle-points a distance O(h−2) from these
each pole, and there are infinitely many such poles.

The physical reason why a plate placed a long way from the boundary layer
can have a strong effect on the absolute instability compared with the case of an
unconfined flow is that an impulsive disturbance to the boundary layer can produce
a disturbance that propagates and grows in the wall-normal direction. If the flow
is unconfined then this growing wall-normal part of the disturbance eventually exits
the region of interest. However, if the flow is confined by a plate, even one far from
the boundary layer, then eventually this growing wall-normal part of the disturbance
reaches the plate and sets up a standing wave in the wall-normal direction with an
enhanced growth rate of absolute instability, because the greater convective growth
in the wall-normal direction of the unconfined flow is converted into the temporal
growth rate of the standing wave in the confined flow. Clearly, this mechanism only
operates when growth occurs in the wall-normal direction in the unconfined flow,
which itself occurs when the dominant saddle approaches, or crosses, the imaginary
axis of the complex wavenumber plane.

These results expose a limitation to the familiar concept of a flow that is unconfined
in the wall-normal direction. Such flows are confined in practice but, for the cases
presented here, the stability characteristics of the corresponding confined flow do
not approach the stability characteristics of the unconfined flow as the domain
is extended. For these flows, the unconfined-flow problem is a useful model for
disturbance propagation for times until disturbances reach the bounding plate, after
which, the confined-flow problem must be considered.

The above argument depends on all length scales, including the distance to the
plate, h, being small compared with the distance over which the basic flow evolves,
and this can be realized, in principle, by increasing the Reynolds number. It is helpful
to consider the flow at a fixed physical radius from the axis of rotation, with a plate at
a fixed physical height above the disk; then, increasing the Reynolds number (e.g. by
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increasing the angular velocity of the disk) will reduce the thickness of the boundary
layer and therefore simultaneously improve the parallel-flow approximation (because
the wavelengths considered are proportional to the boundary-layer thickness) and
also increase h (which is scaled on the boundary-layer thickness). Therefore, by
increasing the Reynolds number the limit h → ∞ is approached while maintaining a
valid parallel-flow approximation. These inviscid solutions are therefore valid Navier–
Stokes solutions at large enough Reynolds numbers. Important issues concerning the
relation between these local solutions and global modes, and whether such solutions
can be observed at low enough Reynolds numbers for laminar flow to exist in
an experiment, will require investigation of the viscous problem, which is beyond
the scope of the present work. However, at large Reynolds numbers, non-parallel
effects will be larger for the confined flow than for the unconfined flow because the
wavenumber of the pinch-point in the confined flow has a smaller magnitude.

Although the present detailed results have been obtained for an inviscid piecewise-
linear velocity profile, qualitatively similar behaviour will occur for any flow in which
an unstable dominant saddle-point (i.e. pinch-point) crosses, or approaches in the
manner described here, the imaginary axis of the complex-wavenumber plane at a
point where a branch-cut lies in the unconfined flow. In fact, pinch-points have been
found to cross the branch-cuts on the imaginary-wavenumber axis in several other
unconfined flows. It may be useful to review these works briefly so that their results
may be placed within the context of the present paper.

Huerre & Monkewitz (1985) encountered this behaviour in a smooth mixing-layer
flow. When the pinch-point for this flow crosses the imaginary-wavenumber axis, the
imaginary part of its frequency is negative, indicating a convectively unstable flow.
They simply stated that the left half-plane is of no interest for the evaluation of
physical quantities. Lim & Redekopp (1998) encountered this behaviour in a model
for swirling jets. They questioned the physical relevance of such a saddle and, while
they did not propose an argument for ignoring the saddle, they did not investigate
it further. However, they did carry out some calculations for the corresponding
confined flow (in which an outer cylinder concentric with the jet is added) and
found that confinement could be destabilizing for the absolute instability in some
circumstances. Gallaire & Chomaz (2003) suggested that the seemingly non-physical
behaviour occuring when the pinch-point crosses the imaginary wavenumber axis
in the swirling-jet problem is due to the ‘acausal’ nature of the model problem,
which has discontinuous basic-velocity profiles, resulting in an ill-posed initial-value
problem (arbitrarily small-scale disturbances have arbitrarily large growth rates).
However, Huerre & Monkewitz (1985), Healey (2006a) and Healey (2006b) all show
that a pinch-point can cross, or approach, the imaginary axis of the wavenumber
plane in smooth flows, which give causal well-posed initial-value problems.

Yu & Monkewitz (1990) studied the absolute instability of plane jets and wakes
with non-uniform density and found a case where the pinch-point approaches the
imaginary-wavenumber axis (their figure 7), but they did not comment on the
physical significance of this behaviour. Juniper & Candel (2003) studied the effect
of confinement on plane wakes with non-uniform density and found that it can
destabilize the absolute instability. They also observed saddle-points on, or close to,
the imaginary-wavenumber axis (their figure 4), but these were not remarked upon.
However, in a more detailed extension of this work, Juniper (2006) found that the
pinch-point can cross the imaginary-wavenumber axis. When this happens in the
unconfined flow, he ignored this saddle, and when it occurs in the confined flow
he called it an ‘ambiguous saddle’ and again ignored it, even though it satisfies
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homogeneous boundary conditions. Several arguments were presented for why these
saddles should be ignored. One was based on the presumed breakdown of the parallel-
flow assumption (it does not break down if the imaginary part of the wavenumber is
finite; see § 2.2). Another is based on the failure of these modes to decay with distance
outside the shear layer (but we now know that disturbances can grow for a finite
distance outside the shear layer see Healey 2006b).

Bearman & Zdravkovich (1978) found that placing a plate near a circular cylinder
caused the vortex shedding behind the cylinder to become better defined and more
regular. If the shedding pattern is the physical manifestation of a nonlinear global
mode resulting from local absolute instability, then it may be that the effect of the
confinement is to strengthen the absolute instability and so strengthen the global
mode. While the connection (if any) between this problem and the present work
is speculative at present, it does raise the question of what the effect of ‘semi-
confinement’, i.e. adding only a single plate to a flow nominally unconfined both
above and below the shear layer, will be on the absolute instabilities of plane jets and
wakes and mixing layers.

Although saddles have been found that cross the imaginary-wavenumber axis in
several different flows, the physical significance of this behaviour was first explained
in Healey (2006b). Several studies have noted the unexpected destabilizing effect
of confinement for these flows. The present paper, together with Healey (2006b),
provides an overarching theoretical framework explaining why confinement will be
destabilizing when a pinch-point crosses, or approaches, the imaginary-wavenumber
axis in any flow.

Appendix A. Dispersion relation for unconfined flow
Substituting (2.5) and (2.6) into (2.7) for n = 1 and n = 2 and eliminating k1, k2

and k3 gives the dispersion relation ∆ =0, where

∆ = d2ω
2 + d1ω + d0 (A 1)

and

d2 = 7200γ 2, (A 2)

d1 = 60
√

γ 2[3(4α − 5β) − 6
√

γ 2(4α − 25β) − 16α exp(−2
√

γ 2)

+ (4α + 15β) exp(−8
√

γ 2)], (A 3)

d0 = − 8α(4α + 15β) − 360β(4α − 5β)γ 2 + 3(360αβ +91α2 − 75γ 2)
√

γ 2

+ 8α(4α + 15β − 120β
√

γ 2) exp(−2
√

γ 2) + 8α(4α + 15β) exp(−6
√

γ 2)

− (4α + 15β)[8α + 3(4α − 5β)
√

γ 2] exp(−8
√

γ 2), (A 4)

where γ 2 = α2 + β2.

Appendix B. Analytic long-wave solutions for the dispersion relation for
unconfined flow

The branch-points in the unconfined flow are found by substituting the expansions

α = α0β + α1β
3/2 + α2β

2 + · · · , ω = ω1β
3/2 + ω2β

2 + · · · (B 1a, b)

into ∆ =∆ω =0 and then equating coefficients of powers of β and solving the resulting
simultaneous equations for α0, α1, α2, ω1 and ω2. this leads to asymptotic formulae
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for the two branch-points on the real α-axis:

α =
5

4
β − 5(41)1/4β3/2 +

2025

4
√

41
β2 + · · · , ω = − (41)1/4

2
β3/2 +

25√
41

β2 + · · · (B 2a, b)

and

α =
5

4
β +5(41)1/4β3/2 +

2025

4
√

41
β2 + · · · , ω =

(41)1/4

2
β3/2 +

25√
41

β2 + · · · . (B 3a, b)

Note that limβ→0 Q′
1(0) = 0, i.e. the wall shear of the effective basic flow tends to zero

for these branch-points in the long-wave limit, see (2.5), where Q1 is defined below
(2.7). The branch-points with exponentially growing eigenfunctions in the wall-normal

direction are found by substituting (B 1) into ∆ =∆ω = 0, but with
√

γ 2 → −
√

γ 2 in
∆ and ∆ω. Following the same steps as above gives a complex-conjugate pair of
branch-points; the one with Im(ω) > 0 is

α =
5

4
β +5(41)1/4iβ3/2 − 2025

4
√

41
β2 + · · · , ω =

(41)1/4i

2
β3/2 − 25√

41
β2 + · · · . (B 4a, b)

The two saddle-points shown in figure 5(b) can be found by substituting expansions
of the form

α = α0β + α1β
2 + · · · , ω = ω0β

2 +ω1β
3 + · · · (B 5a, b)

into ∆ =∆α = 0, and equating coefficients of powers of β than gives

α = −4

5
β − 14 525 689

390 625
√

41
β2 + · · · , ω = − 20√

41
β2 +

58 147 664

3151875
β3 + · · · (B 6a, b)

for the saddle-point with decaying eigenfunction and, similarly,

α = −4

5
β +

14 525 689

390 625
√

41
β2 + · · · , ω =

20√
41

β2 +
58 147 664

3151 875
β3 + · · · (B 7a, b)

for the saddle-point with growing eigenfunction.
The rest of the saddle-points follow the more exotic scalings discovered by Healey

(2006a) for smooth velocity profiles:

α = α0β
3/4 +α1β + · · · , ω = ω0β

2 + ω1β
9/4 + · · · . (B 8a, b)

Substituting (B 8) into ∆ =∆α = 0, taking
√

α2
0 = α0 and equating coefficients of

powers of β gives four saddle-points; the three with Im(ω) � 0 are

α =
53/4

2
β3/4 +

199

120
β + · · · , ω = 5β2 +

10(5)1/4

3
β9/4 + · · · , (B 9a, b)

α = −53/4i

2
β3/4 +

199

120
β + · · · , ω = 5β2 +

10(5)1/4i

3
β9/4 + · · · , (B 9c, d )

α = −53/4

2
β3/4 +

199

120
β + · · · , ω = 5β2 − 10(5)1/4

3
β9/4 + · · · . (B 9e, f )

Note that the more complicated expansions involving logarithms derived Healey
(2006a) using matched asymptotic expansions for smooth profiles in reduce to the
above results when (2.5) is used for the basic flow, since the present problem has no
critical-layer effects.
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Substituting (B 8) into ∆ =∆α = 0, taking
√

α2
0 = − α0 and equating coefficients of

powers of β gives another four saddle-points; the two with Im(ω) � 0 are

α =
53/4

2
exp

(
πi

4

)
β3/4 +

199

120
β + · · · , ω = −5β2 +

10(5)1/4

3
exp

(
3πi

4

)
β9/4 + · · · ,

(B 10a, b)

α =
53/4

2
exp

(
3πi

4

)
β3/4 +

199

120
β + · · · , ω = −5β2 +

10(5)1/4

3
exp

(
πi

4

)
β9/4 + · · · .

(B 10c, d )

The five saddle-points given by (B 9) and (B 10) are the five shown in figure 5(a).
The scalings (B 8) therefore give rise to a total of eight saddle-points and, as β → 0
they approach a circle with radius O(β3/4) and are equispaced at angles nπ/4, where
n = 0, 1, 2, . . . , 7, around the circle; only the five with Im(ω) � 0 are shown in
figure 5(a).

Appendix C. Dispersion relation for confined flow
Applying the jump conditions (2.7) to equation (3.2) and eliminating the constants

k1, k2 and k′
3 leads to the dispersion relation F = 0 for the problem with an outer

plate, where

F = f2ω
2 + f1ω + f0 (C 1)

and

f2 = 7200γ 2 sinh(
√

γ 2h), (C 2)

f1 = 60
√

γ 2{3(4α − 5β) cosh(
√

γ 2h) − 16α cosh[
√

γ 2(h − 2)]

+(4α +15β) cosh[
√

γ 2(h − 8)] − 6(4α − 25β)
√

γ 2 sinh(
√

γ 2h)} (C 3)

f0 = −3
√

γ 2{(4α − 5β)(4α + 15β) cosh[
√

γ 2(h − 8)] + 320αβ cosh[
√

γ 2(h − 2)]

− (360αβ + 91α2 − 75γ 2) cosh(
√

γ 2h)} − 8{α(4α + 15β)[sinh(
√

γ 2{h − 8})
− sinh(

√
γ 2{h − 6}) − sinh(

√
γ 2{h − 2}) + sinh(

√
γ 2h)]

+ 45βγ 2(4α − 5β) sinh(
√

γ 2h)} (C 4)

and γ 2 = α2 + β2. It can be verified that this dispersion relation becomes
asymptotically close to that of the unconfined flow shown in Appendix A when

Re(
√

γ 2h) � 1.
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